Sulfur dioxide treatment from flue gases using a biotrickling filter-bioreactor system.

نویسندگان

  • Ligy Philip
  • Marc A Deshusses
چکیده

Complete treatment of sulfur dioxide (SO2) from flue gases in a two-stage process consisting of a biotrickling filter followed by biological post-treatment unit was investigated. The biotrickling filter could remove 100% of influent SO2 from simulated flue gas at an empty bed residence time of 6 s for a concentration range of 300-1000 ppm(v). All the absorbed SO2 was recovered in the biotrickling filter liquid effluent as sulfite (a product of chemical reaction of SO2) and sulfate (product of biological oxidation of sulfite). The biotrickling filter liquid effluent was further processed biologically in a single post-treatment unit consisting of a combined anaerobic and microaerophilic reactor for the simultaneous reduction of sulfate and sulfite to sulfide and oxidation of sulfide to elemental sulfur. The post-treatment unit could effectively treat the biotrickling filter effluent and produce elemental sulfur. The sulfur production efficiency of the reactor reached about 80% of the SO2 treated. This new biological treatment system seems to be a promising alternative for flue gas desulfurization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The control of mercury vapor using biotrickling filters.

The feasibility of using biotrickling filters for the removal of mercury vapor from simulated flue gases was evaluated. The experiments were carried out in laboratory-scale biotrickling filters with various mixed cultures naturally attached on a polyurethane foam packing. Sulfur oxidizing bacteria, toluene degraders and denitrifiers were used and compared for their ability to remove Hg 0 vapor....

متن کامل

Theoretical and Experimental Investigation of SO2 Adsorption from Flue Gases in a Fluidized Bed of Copper Oxide

Among the air pollutants, sulfur dioxide has been given special emphasis for posing dangers to the environment. SO2 emissions in the air have harmful effects on human health and the environment. Respiratory diseases and exacerbation of heart diseases are among dangerous symptoms for human health, especially when high concentrations of SO2 are emitted. Therefore, in the present study, a wide var...

متن کامل

Optimization of bioreactor performance for the oxidation of ferrous sulfate using Taguchi approach

The biological oxidation of ferrous to ferric ion by iron oxidizing bacteria is potentially a useful industrial process for the removal of H2S from industrial gases, desulphurization of coal, and removal of sulfur dioxide from flue gas. In the bioprocess of H2S removal an aqueous Fe2(SO4)3 solution is used as an absorbent. H2S is absorbed and oxidized to elemental sulfur. At the same time, Fe i...

متن کامل

Biological sweetening of energy gases mimics in biotrickling filters.

Removal of hydrogen sulfide from waste and energy-rich gases is required, not only because of environmental health and safety reasons, but also because of operational reasons if such gases have to be used for energy generation. A biotrickling filter for the removal of ultra-high concentrations of H2S from oxygen-poor gases is proposed and studied in this work. Two laboratory-scale biotrickling ...

متن کامل

Co-treatment of hydrogen sulfide and methanol in a single-stage biotrickling filter under acidic conditions.

Biofiltration of waste gases is cost-effective and environment-friendly compared to the conventional techniques for treating large flow rates of gas streams with low concentrations of pollutants. Pulp and paper industry off-gases usually contain reduced sulfur compounds, such as hydrogen sulfide and a wide range of volatile organic compounds (VOCs), e.g., methanol. It is desirable to eliminate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 37 9  شماره 

صفحات  -

تاریخ انتشار 2003